Effects of Calcium Carbonate Admixture from Common Cockle Shell

Etudes

Effects of Calcium Carbonate Admixture from Common Cockle Shell (Cerastoderma edule) and Marsh Clam (Polymesoda expansa) Powder Mixture in the Properties of Concrete
Researcher:
Mariah A. Cruz
Nabunturan National Comprehensive High School, Nabunturan, Compostela Valley, Philippines
ABSTRACT
This project studied the potential of mixed ground seashells in the durability of the concrete. The aim of this project was to create a concrete with calcium carbonate admixture from mixed Common Cockle Shell (Cerastoderma edule) and Marsh Clam (Polymesoda expansa).The use of chemical admixture like formaldehyde has a great defect in the environment and little cracks in concretes may exposed radon which has a big impact to an individual. The Cockle Shells and Marsh Clams were washed, boiled, oven-dried and homogenized. Calcium carbonate was then produced and were added to the cement mixture. The mortar cubes with different treatments of the calcium carbonate admixture (0%, 1% and 2%) were tested for its compressive strength. Based on the test results, the mortar cube with 1% calcium carbonate admixture has the highest compressive strength of 1988.26 psi compared to the mortar cube without calcium carbonate admixture with a strength of 887.89 psi. Thus, calcium carbonate may be an alternative source of mineral admixture without disfiguring the environment. The researcher encouraged others to find other source of mineral admixture and to study the other properties of concrete.

Keywords: Calcium carbonate, Common Cockle Shell, Marsh Clam, admixture

INTRODUCTION

Application of chemical admixture in concrete is a common routine in most constructions. This may improve the properties of concrete but it can create a leaching problem (Patel & Deo, 2016). Formaldehyde is used as a chemical admixture in concrete (Maganti and Raju, 2013). The said chemical is dangerous to humans for it can cause defects like bronchitis and at high levels, it may build up fluid in the lungs and can lead to death (Toxic Use Reduction Institute, 2014).
A chemical which has related effects as of the formaldehyde is radon gas. You can’t see or smell radon gas but it may cause some health issue for it can be exposed through cracks in concretes (WET Sealers, n.d.). A person exposed to radon gas is already exposed to constant radiation and that element settles in the lungs (Kohut, 2017).
The United States Environmental Protection Agency stated that about 13,000 non-smoking people die each year due to lung cancer that is related to radon exposure. According to the Philippine Cancer Society, radon exposure in the Philippines is the second leading cause of lung cancer. According to the International Atomic Energy Agency, our country got the largest per capita annual rate of radon inhalation at 48% last 2013.

Calcium carbonate is a mineral which is common in seashells. In the study of Li, Huo, and Du (2018), limestone is used as a mineral admixture in concrete. As stated in the article from the International Plant Nutrition Institute, Limestone contains approximately 40% calcium carbonate. But using this material may have a negative effect to the environment.

Mohamed, Yusup, and Maitra (2012) stated that seashells contain 95-99% of calcium carbonate prior to its weight. Further research with regards to the material, seashell wastes are highly available and are dumped with the absence of re-use value (Mo, Jumaat, Alengaram, Yuen, Goh ; Lee, 2018). Thus, seashells like Marsh Clam (Polymesoda expansa) and Common Cockle Shell (Cerastoderma edule) may be an alternative admixture in concrete for it has the same component as of the mineral admixture that is used in the present.
This project aims to study the compressive strength of the concretes with two different treatments of calcium carbonate admixture compare to the compressive strength of the concrete without a dosage of calcium carbonate admixture.

MATERIALS AND METHODS
This study has three phases: Phase I – Preparation of Raw Materials, Phase II – Preparation of the Concretes, Phase III – Compressive and Flexural Strength Testing. All of the experimentations were done in Nabunturan National Comprehensive High School (NNCHS). And the testing was done in a laboratory in Panacan, Davao City.

Phase I – Preparation of Raw Materials
Seashells
The Common Cockle Shell (Cerastoderma edule) and Marsh Clam (Polymesoda expansa) were collected from the public market in Nabunturan. The cockle shells and marsh clams were washed separately in water to remove the dirt. After washing, the seashells were boiled separately to let the shells open. Then, the meat of it was removed leaving the shells.

Molds
The plywood and nails were collected in a hardware store in Nabunturan. The plywood was cut in 46cm x 15cm x 15cm for the body of the mold and the rectangular prism mold was divided into 3 sections by 2 plywood with a size of 15cm x 15cm x 15cm. Following the recommendation of Ammari, Ghoraishi, Abidou, and Al-Rousan (2017), the researcher made 3 molds with a standard interior size of 150mmx 150mm x 150mm.

Admixture
Adopting the procedure of Mohamed et al. (2012), the cockle shells and marsh clams were placed in the trays separately and underwent the process of oven-drying at 110 degrees Celsius for 2 hours. After 2 hours, both seashells were crushed using a mortar and pestle. After the crushing of seashells, the researcher used a strainer to separate the powder one from the particles that have not been fully crushed. Then, the powdered cockle shells and marsh clams were stored in the crucibles.

Phase II – Preparation of the Concretes
Concretes
Twenty kilograms of cement, 40kg of coarse aggregate and 80kg of fine aggregate were collected in the sand and gravel store in Nabunturan. Then, the researcher made 3 batches of cement and was mixed together with the coarse aggregate and fine aggregate with a ratio of 1:2:4 (Adewole, Ajagbe ; Arasi, 2015). After mixing, the researcher added the calcium carbonate admixture from the common cockle shells and marsh clams that have been pulverized in a ratio of 1:1. The admixture were added in different treatments (0%, 1%, 2%) prior to its weight. Then, the researcher added 4 liters of water to the mixture and it was mixed until the workability is achieved. Then, the wet cement mixture with different treatments was placed in the molds and it will be left for 24 hours to dry the cement.
Water Curing
The concretes that have been dried underwent the water curing process in a container filled with tap water for 28 days. After 28 days, the concretes with three different treatments were removed from the water and were left to dry.

Phase III – Compressive Strength Testing
The concrete samples were delivered to the Universal Multi-Testing Solutions Inc. in Davao City to test its compressive strength. The results were released afterward.

Phase IV – Data Collection and Analysis
After the testing of the concrete samples with different treatments, the data were gathered. The researcher computed for its mean of each treatment and made a table to compare the difference of the 3 treatments.

Risk and Safety
Since we are dealing with cement, proper dress code when conducting the experiment is truly important. Wearing the proper dress code and the use of laboratory equipment while working inside the laboratory is a must. In case of difficulties, a help from a professional or an adult is highly recommended.

RESULTS
Table 1: The mean compressive strength (psi) of the mortar cubes in 1% and 2% calcium carbonate admixture
Treatment Compressive strength (psi) of the mortar cubes in three trials with the same curing age MEAN
28 days 28 days 28 days Control (0%) 920.59 791.51 951.59 887.89
CaCO3 (1%) 2303.24 1812.24 1849.30 1988.26
CaCO3 (2%) 566.14 711.08 1960.72 1079.32
Table 1 shows that the mortar cube with 1% treatment has the highest compressive strength at 1988.26 psi. While the mortar cube without treatment has the lowest compressive strength at 887.89 psi.
Table 2: The Percentage Difference of the Three Treatments
Treatments A (control) B (experimental) Difference (in %)
Control (0%) 887.89 887.89 0%
CaCO3 (1%) 887.89 1988.26 124%
CaCO3 (2%) 887.89 1079.32 22%
Table 2 shows that the mortar cube with 1% treatment has the highest percentage difference at 123% compared to the mortar cube with 2% treatment at 22%. While the mortar cube without the treatment remained as it is.

Discussion
According to the study of Chuan (2014), there is a decrease in the concrete’s workability and compressive strength as the amount of admixture increases. Furthermore, the concrete with 1% admixture is serviceable to have the advantage in boosting the strength. Still, if the percentage replacement of ground seashells exceed the maximum quantity will affect the density of the cement mixture resulting to a weak compressive strength in the cement. An article from the Industrial Minerals Association stated that “calcium carbonate is an inorganic compound that is commonly found in limestone, chalk, marble and it is produced by sedimenting shells of small fossilized snail, shellfish, and coral over millions of years.” The potential of limestone as a mineral admixture was studied by Li et al. (2018) and came out effective. But quarrying limestone may result to the disfiguration of the local environment. Seashell waste is an economic and environmental hazard (Ramirez, Barker, Love, Milazzo & McGuillcuddy, 2015). Seashells contains a high dosage of calcium carbonate as that of the limestone. Some commercial admixtures contain resin acids which has a toxic character that when its waste is exposed to the environment may be resulting to the presence of unwanted toxic effects (Togero, 2005; Mascarelli, 2012). With the use of mineral admixture can reduce the adverse effect of cement in the environment (Magudeaswaran, Selvam, & Gold V., 2015). The calcium carbonate from Common Cockle Shell (Cerastoderma edule) and Marsh Clam (Polymesoda expansa) showed accurate results which is capable of having a source of cement admixture based in its compressive strength and its availability.

Conclusion
The study evaluated the potential of the ground cockle shell and marsh clam in the durability of a concrete. Based on the gathered data and results, the mortar cube with the treatment of 1% calcium carbonate admixture obtained the highest compressive strength compared to the mortar cube with 2% treatment and the negative control. Therefore I conclude that the mixture of calcium carbonate from the cockle shell and marsh clam has the capability to be an alternative admixture.

Recommendation
The researcher would like to recommend to conduct tests with regards to the other properties of concrete. And also do explore other materials that contains high dosage of calcium carbonate or calcium oxide which is the main ingredient of mineral admixtures.

Acknowledgement
I would like to express my deepest appreciation to the following people:
First, to God for the blessings and for the hope that you’ve given to me to strive and finish this project successfully. To Mrs. Leah R. Guirigay for giving me the chance to work on this project. For the patience, support and for your advices that motivated me. To Mrs. Candelaria Bolonos for providing the different apparatuses that I needed for my lab session. To my schoolmates, Brad Lee Tulio and Earl Roed Cabalan for lending me your manuscript as a basis and for helping me throughout this journey. To my parents, Mr. and Mrs. Martin F. Cruz Jr. for helping me on purchasing the different materials that I needed for my study and for believing me that I can do it. To my classmate, Yuanne Emmanuel Eling for helping me on mixing and making the mortar cubes. To my fellow individual, Renee Arianne Madrid for being there always to motivate me through tough times. And to the rest of my classmates and friends, for the never ending love and support. To God be the glory!
REFERENCES
P, Magudeaswaran ; Panneer Selvam, Vaishali ; Gold. V, Vime. (2015). Incorporating Mineral Admixtures in High Performance Green Concrete. International Journal of Applied Engineering Research, 10(47), 32359-32367. Retrieved from
https://www.researchgate.net/publication/298401533_Incorporating_Mineral_Admixtures_in_High_Performance_Green_Concrete
M. Henry, G. Pardo, T. Nishimura, and Y. Kato (September 2011). Balancing durability and environmental impact in concrete combining low-grade recycled aggregates and mineral admixtures. Resources, Conservation and Recycling, 5(11), 1060-1069. Retrieved from
https://doi.org/10.1016/j.resconrec.2011.05.020
Amanda Mascarelli (March 15, 2015). Environment: Toxic effects. Nature, 483, 363-385. Retrieved from
https://www.nature.com/nature/journal/v483/n7389/full/nj7389-363a.html
Ase Togero (2006). Leaching of Hazardous Substances from Additives and Admixtures in Concrete. Environmental Engineering Science, 23(1). Retrieved from
https://doi.org/10.1089/ees.2006.23.102
P. Chuan (2014). EFFECT OF SAW-DUST – SEA SHELL POWDER MIXTURE ON COMPRESSIVE STRENGTH OF CEMENT MORTAR. Retrieved from
umpir.ump.edu.my/10456/
Toxics Use Reduction Institute (2014). Health and Environment. Retrieved from
https://www.turi.org/TURI_Publications/TURI_Chemical_Fact_Sheets/Formaldehyde_Fact_Sheet/Formaldehyde_Facts/Health_and_EnvironmentLi, Yue ; L. Du, X ; Huo, D. (2018). UTILIZATION OF LIMESTONE AS MINERAL ADMIXTURE IN CEMENT AND CONCRETE. Retrieved from
https://www.researchgate.net/publication/238660921_UTILIZATION_OF_LIMESTONE_AS_MINERAL_ADMIXTURE_IN_CEMENT_AND_CONCRETEIndustrial Mineral Association (n.d.). What is Calcium Carbonate. Retrieved from
https://www.ima-na.org/page/what_is_calcium_carbRamirez, S. Barker, T. Love, E. Milazzo, and L. McGillicuddy (2015). WASTE SHELL COMPOSITES. Retrieved from
https://web.wpi.edu/Pubs/E-project/Available/E-project-032615-131659/unrestricted/MQP_Final-signed.pdfPhilippine Cancer Society (n.d.). What is it about Lung Cancer? Retrieved from
www.philcancer.org.ph/wp-content/uploads/…/Whar-is-it-Lung-Cancer-Jul-PCS.pdfG. K. Patel and S. V. Deo (October 2016). Effect of Natural Organic Materials as Admixture on Properties of Concrete. Indian Journal of Science and Technology, 9(37). Retrieved from
http://dx.doi.org/10.17485/ijst%2F2016%2Fv9i37%2F93541Adewole, Kazeem ; Ajagbe, Wasiu ; Ademola ARASI, Idris. (2015). Determination of appropriate mix ratios for concrete grades using Nigerian Portland-limestone grades 32.5 and 42.5. Leonardo Electronic Journal of Practices and Technologies, 14, 79-88. Retrieved from
https://www.researchgate.net/publication/284916761_Determination_of_appropriate_mix_ratios_for_concrete_grades_using_Nigerian_Portland-limestone_grades_325_and_425J. Maganti and V. Raju (2013). Compatibility of Sulphonated Naphthalene Formaldehyde and Lignosulphonates based Superplasticizer with Portland Slag Cements. Gokaraju Ranga Raju Institute of Engineering and Technology. Retrieved from
www.claisse.info/2013%20papers/data/e513.pdfInternational Plant Nutrition Institute (n.d.) Calcium Carbonate (Limestone). Retrieved from
http://www.ipni.net/publication/nss.nsf/0/38667381F317E4A2852579AF00767382/$FILE/NSS-18%20Lime.pdfUnited States Environmental Protection Agency (n.d.) HEALTH RISK OF RADON. Retrieved from
https://www.epa.gov/radon/health-risk-radonMo, Kim Hung ; Johnson Alengaram, U ; Jumaat, Zamin ; Cheng Lee, Siew ; Inn Goh, Wan ; Wah Yuen, Choon. (2018). Recycling of seashell waste in concrete: A review. Construction and Building Materials. 162. 751-764. Retrieved from
https://www.researchgate.net/publication/322195850_Recycling_of_seashell_waste_in_concrete_A_reviewMadiha Z. J. Ammari et al. (2017). SAND WITH CRUSHED SEASHELLS AND ITS EFFECT ON THE STRENGTH OF MORTAR AND CONCRETE USED IN THE UNITED ARAB EMIRATES. Retrieved from
https://aurak.ac.ae/publications/Sand-with-Crushed-Seashells-and-its-Effect-on-the-Strength-of-Mortar-and-Concrete-used-in-the-United-Arab-Emirates.pdf
Kristopher Kohut (2017). Health Effects of Radon. Retrieved from
https://serc.carleton.edu/NAGTWorkshops/health/case_studies/radon.htmlWET Sealers (n.d.). Radon Gas. Retrieved from
http://www.wetsealers.com/RadonGas.html